878 research outputs found

    Comparative analysis of the SOL plasma in DEMO using EDGE2D/EIRENE and TECXY codes

    Get PDF
    In this contribution a benchmark of the 2D edge codes TECXY and EDGE2D-EIRENE is presented. A conventional DEMO scenario is considered by assuming a simplified geometry, with the target plates perpendicular to the separatrix, and a pure Deuterium plasma. Despite the different models adopted in the two codes, mainly related to the description of the neutral dynamics and to the different boundary conditions, the results show a good match both in terms of power load profiles on the outer target and predicted trends for global quantities. A scan in density and in diffusion coefficients is performed in order to identify the characteristic conditions and the different regimes of the SOL. Comparable values and similar dependency of the global quantities as a function of the power decay length is also observed. Keywords: EDGE2D, EIRENE, TECXY, DEMO, Diverto

    Assessment of alternative divertor configurations as an exhaust solution for DEMO

    Get PDF
    Plasma exhaust has been identified as a major challenge towards the realisation of magnetic confinement fusion. To mitigate the risk that the single null divertor (SND) with a high radiation fraction in the scrape-of-layer (SOL) adopted for ITER will not extrapolate to a DEMO reactor, the EUROfusion consortium is assessing potential benefits and engineering challenges of alternative divertor configurations. Alternative configurations that could be readily adopted in a DEMO design include the X divertor (XD), the Super-X divertor (SXD), the Snowflake divertor (SFD) and the double null divertor (DND). The flux flaring towards the divertor target of the XD is limited by the minimum grazing angle at the target set by gaps and misalignments. The characteristic increase of the target radius in the SXD is a trade-off with the increased TF coil volume, but, ultimately, also limited by forces onto coils. Engineering constraints also limit XD and SXD characteristics to the outer divertor leg with a solution for the inner leg requiring up-down symmetric configurations. Capital cost increases with respect to a SND configuration are largest for SXD and SFD, which require both significantly more poloidal field coil conductors and in the case of the SXD also more toroidal field coil conductors. Boundary models with increasing degrees of complexity have been used to predict the beneficial effect of the alternative configurations on exhaust performance. While all alternative configurations should decrease the power that must be radiated in the outer divertor, only the DND and possibly the SFD also ease the radiation requirements in the inner divertor. These decreases of the radiation requirements are however expected to be small making the ability of alternative divertors to increase divertor radiation without excessive core performance degradation their main advantage. Initial 2D fluid modeling of argon seeding in XD and SFD configurations indicate such advantages over the SND, while results for SXD and DND are still pending. Additional improvements, expected from increased turbulence in the low poloidal field region of the SFD also remain to be verified. A more precise comparison with the SND as well as absolute quantitative predictions for all configurations requires more complete physics models that are currently only being developed

    Heating, current drive and energetic particle studies on JET in preparation of ITER operation

    Get PDF
    This paper summarizes the recent work on JET in the three areas of heating, current drive and energetic particles. The achievements have extended the possibilities of JET, have a direct connection to ITER operation and provide new and interesting physics. Toroidal rotation profiles of plasmas heated far off axis with little or no refuelling or momentum input are hollow with only small differences on whether the power deposition is located on the low field side or on the high field side. With LH current drive the magnetic shear was varied from slightly positive to negative. The improved coupling (through the use of plasma shaping and CD4) allowed up to 3.4 MW of PLH in internal transport barrier (ITB) plasmas with more than 15 MW of combined NBI and ICRF heating. The q-profile with negative magnetic shear and the ITB could be maintained for the duration of the high heating pulse (8 s). Fast ions have been produced in JET with ICRF to simulate alpha particles: by using third harmonic 4He heating, beam injected 4He at 120 kV were accelerated to energies above 2 MeV, taking advantage of the unique capability of JET to use NBI with 4He and to confine MeV class ions. ICRF heating was used to replicate the dynamics of alpha heating and the control of an equivalent Q = 10 `burn' was simulated

    Current drive at plasma densities required for thermonuclear reactors

    Get PDF
    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors

    Euro Area and Global Oil Shocks: An Empirical Model-Based Analysis

    Full text link
    • …
    corecore